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ABSTRACT: Pb(BO,),-H,0 as sources of B and Pb via a
simple hydrothermal process provided the first binodal
5,9-connected lead borate, PbsB,0;;(OH), (1). Com-
pound 1 crystallizes in the orthorhombic space group
Pnma. The crystal structure is composed of different
cluster building units of B,Og and PbsO,. Compound 1

has an optical band gap of 3.24 eV.

M etal borates are of current interest because of their rich

structural chemistry and diverse applications in miner-
alogy, catalysis, ion exchange, and nonlinear-optical (NLO)
materials." ™ Up to now, main-group borates, transition-metal
borates, and lanthanide borates have been successfully
synthesized through different synthetic approaches.*™'> For
example, Mao and co-workers successfully obtained a series of
germanium borates with second-order NLO properties via
high-temperature solid-state reaction;* Lin and co-workers
systematically investigated the aluminoborates (denoted as
PKU-n) and prepared a porous PKU-2 with extra-large pores of
24-ring channels using the boric acid flux method.*” A family
of open-framework aluminoborates and germanium borates
have been synthesized by Yang and co-workers under mild
hydrothermal/solvothermal conditions using different alkali-
metal cations or organic amine cations as templates.10

Recently, some open-framework inorganic solids have been
obtained by incorporating different cluster building units into
the same framework, which cause much more diversity of the
structures.''* B atoms can be three- and four-coordinated to
O atoms to form different polyborate anions such as
[B305(OH),]", [B,O5(OH),]*", [BsO,,(OH),]",
[B7O9(OH)5]2_; [Bsolo(OH)s]z_; [Buozz]ll_; and
[B1,050(OH)(]*."*""7 Therefore, it should be possible to
combine rich structural motifs of oxo boron clusters with metal
clusters to produce novel metal borates. Compared with a large
number of 3D metal borates assembled by single metal ions
with different oxo borate clusters, only a few examples of 3D
metal borates containing both large metal clusters and oxo
boron clusters are reported to date.>”*"*

Lead borates are known to act as good candidates for NLO
materials because of the stereochemically active lone pairs and
high polarizability of the Pb** ion.”'® The Pb** ion exhibits
variable coordination numbers (2 < CN < 8) and easy-to-form
diversity of lead oxo/hydroxo clusters.”® Pb(BO,),-H,0 is a
commercial product and finds various industrial use. It is
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known that different metastable kinetic phases can be obtained
under the hydrothermal process.'® Pb(BO,),-H,O contains
both Pb and B; if a hydrothermal process is introduced, a new
lead borate may be formed that contains Pb and B units
different from Pb(BO,),-H,0, which would be helpful in
understanding the formation mechanism of lead borate.

Accordingly, our aim is to synthesize 3D lead borate
frameworks using different building units via a simple
hydrothermal treatment of Pb(BO,),-H,O. Here, we report
the synthesis, structure, and UV—vis spectra of a novel 3D lead
borate, PbsB,O,;(OH), (1), which contains B,O, and PbsO,
clusters with an unusual 5,9-connected binodal network.

Colorless lamellar crystals of 1 were obtained by hydro-
thermal reactions of Pb(BO,),-H,0 (0.5 mmol, 0.155 g) in
water (8 mL) at 170 °C for 6 days. The crystals were obtained
in a yield of about 33% based on Pb. Its purity was confirmed
by powder X-ray diffraction (PXRD) studies (Figure S1 in the
Supporting Information, SI). Energy-dispersive spectrometry
shows that Pb is a major component in compound 1.
Compound 1 could not be obtained when Pb(BO,),-H,O
was replaced with PbO and other B sources (B,0;, Hy;BO;, or
K,B,0,4H,0).

The structure was solved by direct methods and refined by
full-matrix least squares on F*> with the SHELXTL-97
program.”°™** The asymmetric unit of 1 contains 15
independent non-H atoms, including four Pb, three B, and
eight O atoms. Pbl and Pb3 atoms are six- and five-
coordinated, respectively, while Pb2 and Pb4 atoms are four-
coordinated all of the Pb** ions show stereochemically active
lone pairs (Figure S2 in the SI). The Pb—O distances range
from 2.217(18) to 2.991(0) A. The Pb** ions are linked by O
atoms to give a [PbsO,]*" {Pbs} cluster (Figure 1a). The B
atoms adopt two kinds of coordination models, with B—O
bond distances varying from 1.35(3) to 1.38(3) A for the BO,
triangles (B1) and from 1.43(4) to 1.52(2) A for the BO,
tetrahedra (B2 and B3) (Table S1 in the SI). Two BO,
triangles and two BO, tetrahedra are linked via bridging O
atoms to give a B,O, {B,} unit containing two B;O; rings
(Figure 1la). Bond-valence-sum calculations gave total bond
valences of 1.07 for O8, indicating that O8 is an OH group;
other O, Pb, and B atoms are in oxidation states of 2—, 2+, and
3+, respectively (Table SI in the SI).
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Figure 1. (a) PbsO, (left) and B,O, (right) clusters in 1. Symmetry
codes: (A) —, - ~% (E) —, y+ Yy =z (F) x, -+ /4 % (G) %,
yz—1;(K)x— 0.5,y —z—0.5; (L) x — 0.5, =y + 0.5, —z — 0.5. (b)
Polyhedral view the framework of 1 along the b axis.

Each {Pb} unit is bridged by y,-OH™ to give 2D layers in
the bc plane (Figure S3 in the SI); these Pb cluster layers are
further pillared by a {B,} unit into the 3D network (Figure 1b).
As shown in Figure 2a, each {B,} unit is linked to five {Pb,}
clusters, while each {Pb,} cluster is linked to the five nearest
{B,} units and four {Pbg} units. From a topological point of
view, the framework can be rationalized as a 5,9-connected
network with the Schlifli symbol of (3%4%5%)(3*4'*.5'.6°%)
(Figure 2b). To the best of our knowledge, the framework
reported herein defines a new topology for 5,9-connected
networks. To date, high-connected binodal networks are
extremely rare in inorganic solids;***** the reported 5,9-
connected network here is a good example of using different
cluster building units to construct high-connected binodal lead
borate frameworks.

The solid-state UV—visible absorption for compound 1 has
been measured by the diffuse-reflectance spectra at room
temperature (Figure 3). It reveals the presence of an optical
band gap at 3.24 eV; the band gap is smaller than that of the
starting material Pb(BO,),-H,0 (4.12 eV). Thus, a much larger
fraction of visible light is absorbed by compound 1.

The thermal behavior of 1 was examined by thermogravi-
metric analysis (TGA) in a dry air atmosphere from 30 to 800
°C. Compound 1 undergoes one step of weight loss. Above a
temperature of 320 °C, the weight loss is due to decomposition
and collapse of the whole framework (calcd/found, 1.2/0.9%;
Figure S4 in the SI). In the IR spectra of 1, the strong and
broad absorption bands in the range of 3000—3700 cm™" are
assigned as characteristic peaks of OH vibration. The
characteristic band around 1270 cm™ is due to the B—O
asymmetric stretching of BO; units. The band around 1000
cm™" is associated with BO, units (Figure SS in the SI).

In summary, a new lead borate constructed of different
cluster building units of {B,} and {Pbg} has been obtained via a
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Figure 2. (a) Coordination environments of {B,} (left) and {Pbg}
(right) clusters in 1. (b) Schematic representation of the connection
between {B,} and {Pbs} clusters. Color code: purple, {B,} cluster;
green, {Pbg} cluster.
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Figure 3. Optical absorption spectra for solid samples of 1 and
Pb(BO,),-H,0.

simple hydrothermal process using Pb(BO,),-H,O as the
starting material. The linkage between {Pbg} and {B,} gives the
first 5,9-connected lead borate. The successful isolation of this
compound gives a good example of an easy synthesis of lead
borate under hydrothermal conditions.
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X-ray crystallographic files in CIF format for structure 1,
PXRD, TGA, and IR. This material is available free of charge
via the Internet at http://pubs.acs.org.
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